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Abstract: Several semiempirical tight-binding models are parametrized and tested for aluminum

clusters and nanoparticles using a data set of 808 accurate AlN (N ) 2-177) energies and

geometries. The effects of including overlap when solving the secular equation and of

incorporating many-body (i.e., nonpairwise) terms in the repulsion and electronic matrix elements

are studied. Pairwise orthogonal tight-binding (TB) models are found to be more accurate and

their parametrizations more transferable (for particles of different sizes) than both pairwise and

many-body nonorthogonal tight-binding models. Many-body terms do not significantly improve

the accuracy or transferability of orthogonal TB, whereas some improvement in the nonorthogonal

models is observed when many-body terms are included in the electronic Hamiltonian matrix

elements.

I. Introduction
Atomistic simulations of large systems require methods for
computing electronic energies and their gradients that are
orders of magnitude more efficient than most ab initio and
density functional theory (DFT) methods. Simple analytic
potential energy functions (e.g., Lennard-Jones,1 embedded
atom,2 etc.) are efficient, but they are not always accurate
and may not be valid for uses other than those for which
they are parametrized. For example, we showed previously3,4

that analytic functions fit to either bulk data or diatomic data
for pure aluminum perform poorly for particles of intermedi-
ate size, including clusters and nanoparticles. Although we
were able to obtain4 analytic potential energy functions that
are accurate for small clusters, nanoparticles, and bulk
aluminum using reasonably simple functional forms and an
efficient fitting strategy that includes both small clusters and
the bulk, the problem of extending these fits to heteronuclear
systems remains unsolved and would likely require modified
functional forms, such as charge-transfer terms,5 variable
atom types,6 and so forth.

Semiempirical molecular orbital or crystal orbital methods
include extended Hu¨ckel theory,7 tight binding8 (which is
simply a more flexible form of extended Hu¨ckel theory or

another name for extended Hu¨ckel theory), and neglect of
differential overlap theories (like AM19,10 and others which
have recently been reviewed11). They offer a theoretically
attractive approach to modeling reactive systems because
they are computationally affordable for many systems, while
they include an orbital-based Hamiltonian, a diagonalization
step, and the Pauli principle, three features that give rise to
directional bonding and valence saturation. Some such
methods, for example, Hoffmann’s extended Hu¨ckel method,7

include orbital overlap both in parametrizing the Hamiltonian
and in the secular equation, while other methods, both in
physics and in chemistry, include orbital overlap (or a
function with comparable dependence on interatomic dis-
tance) in the Hamiltonian, but not in the secular equation.
(The original Hückel method, in which the Hamiltonian
matrix elements were constants, is no longer widely used.)
Methods that neglect overlap in the secular equation are
usually labeled “orthogonal”, whereas those that retain it in
the secular equation are labeled “nonorthogonal”, and we
follow this usage here. Molecular orbital methods provide a
natural energetic description of bond breaking and forming
and many-body effects.

Another classification that may be made is based on
whether a method is designed to include self-consistent (i.e.,
iterative) steps, which may be necessary for accurately* Correspondingauthor.Fax: (612)624-7007.E-mail: truhlar@umn.edu.
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modeling charge transfer and polar bonds. Although the
motivation is to eventually use orbital methods to model Al
heteronuclear chemistry, the focus of the present work is
limited to pure aluminum clusters and nanoparticles where
charge transfer and bond polarity may be expected to be less
important than other contributions to the total energy, and
we therefore restrict our attention in the present article to
noniterative methods without an explicit treatment of charge
interactions.

Popular orbital-based semiempirical methods were tested
recently12 for small aluminum clusters, where it was found
that none of the semiempirical methods tested was accurate
enough for quantitative work. The most accurate semiem-
pirical method tested in ref 12 (AM1,9,10 which involves
iterating to self-consistency) had an average error of∼0.3
eV/atom. Subsequently, several parametrizations based on
the Wolfsberg-Helmholtz13 (WH) tight-binding (TB) model
were obtained14 using a database of aluminum cluster AlN

(N ) 2-13) energies with an average error as small as 0.03
eV/atom. Here, we build on that work and explicitly consider
the transferability of TB parametrizations using an expanded
data set, containing systems as large as 177 atoms. We also
consider both orthogonal and nonorthogonal TB models, and
we discuss the relationship between orthogonality and many-
body effects.

The question of orthogonal versus nonorthogonal formula-
tions also arises in semiempirical methods that include a self-
consistent-field step. For example, AM19,10and PDDG/PM315

both set the overlap matrix equal to unity in the secular
equation, whereas SCC-DFTB16,17and NO-MNDO18 include
the overlap matrix in the secular equation, thereby increasing
the cost. Nonorthogonal formulations also complicate the
gradient calculation,19 and they make it more difficult to
achieve linear scaling of computational times for large
systems, although linear-scaling nonorthogonal formulations
have been presented for both non-self-consistent20,21 and
charge-self-consistent22 tight-binding methods. A recent23

study found that the mean unsigned error for the heat of
reaction of 34 diverse isomerization reactions is 7.1, 5.0, and
2.8 kcal/mol (0.31, 0.22, and 0.12 eV) for AM1, SCC-DFTB,
and PDDG/PM3, respectively. Similar results were found
for 622 heats of formation, with the nonorthogonal SCC-
DFTB intermediate in accuracy between AM1 and PDDG/
PM323 and with NO-MNDO better than MNDO for HCO
compounds but not for HCN compounds.18 Thus, orthogonal
formulations may be either less or more accurate than
nonorthogonal ones, depending on the parametrization. The
present study is designed to test the role of nonorthogonality
in tight-binding theory by parametrizing nonorthogonal and
orthogonal formulations in the same way using the same
training data.

Section II briefly introduces the TB models that are
considered in this paper. In section III, the database of
accurate energies is described, and the TB models are
parametrized and tested in section IV. Section V discusses
the results, and section VI is a summary.

II. Theory
A many-electron molecular wave function may be ap-
proximated as a product of one-electron wave functionsψj

that satisfy

where

T̂ is the kinetic energy operator;V̂NE is the Coulomb operator
for the attraction of the electron to all of the nuclei, andV̂2

is the sum of the two-electron operators for the Coulomb
repulsion, exchange, and correlation. We treat the valence
electrons explicitly and combine the core electrons with the
nuclei as the total core.

To solve eq 1, the one-electron molecular orbitalsψj are
expanded in an atomic orbital basis setæµ

k, wherei labels
the individual atomic orbitals centered on atomk

where i ≡ (µ,k). The optimal expansion coefficients are
obtained by solving the secular equation

whereε is a diagonal matrix with diagonal elementsεj

and

The sum of the orbital energies (the eigenvalues of eq 4)
weighted by the appropriate orbital occupanciesnj (with nj

) 0, 1, or 2, wherej labels the eigenvalues and eigenvectors)
is called the valence energy or the band energy, given by

Energy levels are typically filled to minimize eq 7, which is
called the aufbau principle. However, in some cases, it is
useful to minimize a more general electronic energy given
by

whereUPen is a penalty energy24 for pairing electrons. We
consider several values of the penalty energy (including zero).
The use of a penalty energy is operationally equivalent to
having different Hamiltonians for spin-up and spin-down
electrons, where the Hamiltonians differ only in thatUPenis
added to the diagonal for spin-down electrons.

The total energyE is

whereECore is the core-core repulsion andEDC corrects for
the double counting of the two-electron interactionsV̂. The
double-counting term and the core-core repulsion are often

Ĥψj ) εjψj (1)

Ĥ ) T̂ + V̂NE + V̂2 (2)

ψj ) ∑
i

cijæi (3)

Hc ) ESc (4)

Hµµ'
kk' ) 〈æµ

k|Ĥ|æµ'
k'〉 (5)

Sµµ'
kk' ) 〈æµ

k|æµ'
k'〉 (6)

EVal ) ∑
j

njεj (7)

EElec ) EVal + δnj2
UPen (8)

E ) EElec + ECore- EDC (9)
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grouped together and represented by an effective pairwise
repulsive term

The pairwise form forVRep has been justified by Foulkes
and Haydock.25 We use a three-parameter repulsion with the
form

whereRkk′ is the distance between atomsk andk′; A, B, and
C are parameters; and the summation runs over all unique
pairs of atoms.

In semiempirical tight-binding models, several additional
approximations are made to make the above procedure
computationally efficient. First, a minimal basis set is
employed (specifically, for Al, one 3s and three 3p orbitals
per atom). Next, the matrix elementsHµµ′

kk′ are taken as
empirical parameters or simple functions of empirical
parameters. In this article, we consider the WH13 model
where

Uµ
k is the valence state ionization potential for an electron

in atomic orbitali on atomk, andK is an empirical parameter,
which Hoffmann optimized7 to 1.75 but which we take to
be a fitting parameter. We consider two other models for
the off-diagonal elements: a parameter-free model derived
by Cusachs and Cusachs26 (CC)

and a form proposed by Lathiotakis et al.27 for metals, which
we denote LAMC.

In the present study, the valence state ionization potentials
Ui

k used in eq 12 are fixed at the atomic experimental28

values (10.62 and 5.986 eV for the 3s and 3p orbitals,
respectively). Then, along with the three parameters in the
repulsion, the WH model has one adjustable parameterK;
the CC model has no adjustable parameters, and the LAMC
model has five adjustable parameters for Al. Following Slater
and Koster,8 the matrix elements were evaluated in a
symmetry-adapted local coordinate system when computing
eq 14.

In all of the above formulations,Hµµ′
kk′ depends only on

atomsR andâ, whereas in a more accurate calculation, the
one-electron contributions also involve three-center terms,
and the two-electron contributions involve three- and four-
center terms. Slater and Koster8 suggested the two-center
simplification, and it is widely used. The models discussed
above are usually called nonorthogonal tight-binding (NTB)
to emphasize the retention of the overlap matrixS.

One may choose to go beyond pairwise tight binding by
writing Hµµ′

kk′ or VRep as a function of the geometry of the

entire system (or the local geometry), and we call such
formulations many-body tight-binding (MBTB) models.14

(Some workers29-33 call them environmental-dependent tight
binding.) Ho and co-workers30-32 suggested a many-body
term to model screening. The screening many-body term was
tested previously for WH tight binding for aluminum
clusters,14 and it was shown to be more accurate than two
other many body-terms that were also tested. In the present
article, we consider three implementations of the screening
(S) many-body function, applied (as discussed elsewhere14)
to screening the repulsion (SR), screening the ionization
potentials (SIP), or screening the off-diagonal elements
(SOD). The screening many-body function has three fitting
parameters, and the SIP implementation has two additional
parameters, as discussed elsewhere.14 The many-body terms
also contain a two-parameter cutoff function, as discussed
in ref 3. One may call a model that retains overlap and adds
many-body terms “nonorthogonal many-body tight-binding”
(NMBTB).

Finally, one may also choose to neglect the overlap when
solving eq 4, and we denote these models as TB and many-
body tight binding; one could also say orthogonal tight-
binding and orthogonal many-body tight-binding, but the
usual notation in the literature is to assume orthogonality
when “nonorthogonal” is not specified. There has been
work34 showing that the effect of including overlap (as in
NTB) is similar to including a many-body term in the off-
diagonal matrix elements of a TB model. This leads to the
interpretation that NTB is more accurate than TB because it
effectively goes beyond the pairwise approximation. How-
ever, both TB and NTB involve a diagonalization step, and
therefore, both schemes include many-body effects. Further-
more, if one chooses to view eq 10 as a fitting scheme, then
VRep not only includes the double-counting correction and
the core-core repulsion, but it also empirically corrects for
all of the other approximations made when applying TB to
real systems. As a result, although it is true that the overlap
matrix is very different from the unit matrix at chemical
atom-atom separations, in light of the many other significant
approximations in TB and NTB theory, it is not clear how
important it is to include overlap in the secular equation.
The question of whether one achieves a betterbalanceof
approximations when one retains or neglects overlap is one
motivation for the current work.

III. Calculations
The tight-binding models are tested using the previously
presented pure aluminum nanoparticle data set.4 This data
set consists of 808 energies and geometries for AlN, with N
) 2-177, including 127 data points for particles with
diameters greater than 1 nm. Symmetric structures such as
icosahedral, face-centered cubic (FCC), hexagonal close-
packed, body-centered cubic, and simple cubic are included
for several atomic volumes. Nonsymmetric structures are
represented as well, including disordered structures and
structures with over- and undercoordinated interior atoms,
that is, atoms with coordination numbers greater than and
less than the bulk value of 12. The data set is divided into
11 groups containing particles with sizesN ) 2, 3, 4, 7,

E ) EElec + VRep (10)

VRep) ∑
k<k'

A exp(-BRkk′)/Rkk′
C (11)

Hµµ'
kk ) -δµµ'Uµ

k (12)

Hµµ'
kk' ) K

Hµµ
kk + Hµ'µ'

k'k'

2
Sµµ'

kk' (k * k') (13)

Hµµ'
kk' ) (2 - |Sµµ'

kk'|)Hµµ
kk + Hµµ

k'k'

2
Sµµ'

k'k' (14)

212 J. Chem. Theory Comput., Vol. 3, No. 1, 2007 Jasper et al.



9-13, 14-19, 20-43, 50-55, 56-79, 80-87, and 89-177,
and the number of data points in each group is 44, 402, 79,
42, 72, 42, 46, 23, 27, 15, and 16, respectively.

Mean unsigned errors per atom for each data group are
computed as discussed elsewhere.4 As we are interested in
the transferability of the TB parametrizations for different
particle sizes, we further average the errors and report the
mean unsigned errorεDim for the dimer data, the average
εClus of the mean unsigned errors for the four groups
containing aluminum clusters with sizes between 3 and 13
atoms, and the averageεNan of the mean unsigned errors for
the six groups of nanoclusters and nanoparticles containing
between 14 and 177 atoms. The overall mean unsigned error
ε is obtained by averaging all 11 data groups, which is
equivalent to

The available adjustable parameters were optimized by
minimizing εDim, (εDim + 4εClus)/5, or ε using a genetic
algorithm35 for two values of the penalty energyUPen, 0 or
3 eV. Fits were also obtained by treating the penalty energy
as an optimized fitting parameter.

IV. Results
Once the optimal parameters were obtained, the resulting
fits were then tested against the full data set, and the results
are summarized in Tables 1 and 2. For comparison, Table 3
contains errors for several fits that have previously appeared
in the literature, including four analytic potential energy
functions: ER,3 a pairwise form fit to the aluminum dimer;
Gol,36 an embedded-atom form fit to bulk data; and NP-A
and NP-B,4 the two most accurate analytic potential energy
functions from ref 2 fit to the same data set that is used here.
Also shown in Table 3 are six tight-binding fits obtained
previously14 using a subset of the current data set with AlN,
N ) 2-13, as well as a data set of ionization potentials and
bulk properties. The OWH and EWH models are TB models
that may be considered as extensions of the WH model, and

the MBTBS, MBTBCN, and MBTBBA are examples of
MBTB, in particular WH models with screening (S) and two
other types (CN and BA) of many-body terms.14

V. Discussion
First, we consider the TB and MBTB results in Table 1. For
zero penalty energy and when the penalty energy is optimized
(resulting in values of 0.02 to 0.05 eV), the parametrizations
obtained by fittingonly to dimer data give very good overall
errors of 0.06 eV/atom. When parameters are obtained by
fitting to the full data set of 808 geometries, the overall errors
do not improve significantly. Furthermore, these errors
(∼0.05 eV/atom) are close to the error for the most accurate
of the orthogonal fits and analytic potential energy functions
presented previously4,14 (see Table 3). This is perhaps a
surprising result considering the long list of approximations
involved in the simple, four-parameter, orthogonal WH TB
model and that the training set involves no information about
many-body effects.

Fits obtained with a penalty energy of 3 eV, which is the
value used by Wang and Mak,24 have larger errors than those

Table 1. Mean Unsigned Errors (eV) for Several
Tight-Binding (TB) Parameterizationsa

method
fitting
data UPen, eV K εDim εClus εNan ε

WH 2 0 0.38 0.03 0.07 0.06 0.06
2-13 0 0.41 0.03 0.06 0.06 0.06
2-177 0 0.41 0.03 0.06 0.05 0.05
2 0.02 0.39 0.02 0.07 0.06 0.06
2-13 0.05 0.41 0.03 0.05 0.06 0.06
2-177 0.04 0.41 0.03 0.06 0.05 0.05
2 3 0.51 0.04 0.42 0.76 0.57
2-13 3 0.42 0.10 0.10 0.09 0.09
2-177 3 0.44 0.11 0.11 0.05 0.08

WH+SIP 2-13 0 0.40 0.03 0.06 0.06 0.06
WH+SR 2-13 0 0.43 0.04 0.05 0.05 0.05
WH+SOD 2-13 0 0.41 0.03 0.05 0.06 0.06
LAMC 2 0 0.03 1.89 3.81 2.77

2-13 0 0.09 0.07 0.12 0.10
a All errors are averages over all 11 groups of data, even though

the fits to the N ) 2 data and the N ) 2-13 data use only one or
five, respectively, of the groups for fitting.

ε ) (εDim + 4εClus + 6εNan)/11 (15)

Table 2. Mean Unsigned Errors (eV) for Several
Nonorthogonal Tight-Binding (NTB) Parametrizations

method
fitting
data UPen, eV K εDim εClus εNan ε

WH 2 0 1.85 0.08 0.63 1.20 0.89
2-13 0 1.91 0.27 0.31 0.49 0.40
2-177 0 1.99 0.38 0.41 0.24 0.31
2 4.54 1.52 0.01 1.14 2.42 1.73
2-13 0.24 1.91 0.24 0.30 0.44 0.37
2-177 0.20 1.99 0.35 0.41 0.21 0.30

WH+SIP 2-13 0 1.94 0.15 0.20 0.40 0.30
WH+SR 2-13 0 1.89 0.24 0.31 0.44 0.37
WH+SOD 2-13 0 1.86 0.14 0.25 0.23 0.23
WHXR 2 0 1.61 0.28 0.70 1.21 0.94

2-13 0 1.77 0.34 0.54 0.70 0.61
2-177 0 1.90 0.49 0.70 0.35 0.49

CC 2 0 0.13 0.52 1.10 0.80
2-13 0 0.16 0.49 1.10 0.79
2-177 0 0.18 0.49 1.08 0.79

CCXR none 0 0.19 0.50 1.08 0.79

Table 3. Mean Unsigned Errors (eV) for Several
Previously Presented Parameterizations for Pure Aluminum

method (ref)a
fitting
data UPen, eV K εDim εClus εNan ε

ER (3) 2 0.01 0.82 2.75 1.80
Gol (36) bulk 0.12 0.12 0.13 0.12
NP-A (4) 2-177 0.01 0.08 0.03 0.05
NP-B (4) 2-177 0.09 0.08 0.05 0.06
WH (14) 2-13b 0.07 0.39 0.03 0.06 0.06 0.06
OWH (14) 2-13b 0.07 c 0.06 0.08 0.07 0.07
EWH (14) 2-13b 0.07 c 0.05 0.06 0.09 0.08
MBTBS (14) 2-13b 0.07 c 0.02 0.05 0.08 0.06
MBTBCN (14) 2-13b 0.07 c 0.03 0.07 0.09 0.08
MBTBBA (14) 2-13b 0.07 c 0.03 0.05 0.06 0.06

a Reference number in parentheses. b A subset of the current data
set for AlN, N ) 2-13, was used for these fits. c These models have
multiple values of K, depending on the local orbital symmetry.
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for smaller penalty energies. Furthermore, the transferability
of the resulting fits is not as good as is observed for smaller
penalty energies; that is, the errors are significantly larger
for data not included in the fits when a subset of data is
used as fitting data.

Including many-body terms (as in the SIP, SR, and SOD
models) does not significantly improve the overall error, and
this is likely due to the already excellent performance with
accurate pairwise interactions.

The optimal value of the Wolfsberg-Hemlholtz parameter
K is around 0.4 for the more accurate TB fits, which is very
different from the value of 1.75 used by Hoffmann.7 The
value of 1.75 was obtained in the context of NTB, where
Hoffmann gave an argument7 thatK should be greater than
unity. In the context of orthogonal TB there is no such
restriction, and the present values of∼0.4 are therefore
reasonable.

We also tested the LAMC functional form for the TB
model. As shown in Table 1, the dimer LAMC fit does not
show the excellent transferability of the WH model, although
by fitting to data up to Al13, good transferability is obtained
to the regime of larger clusters and nanoparticles.

Next, we consider the NTB models summarized in Table
2. The overall errors for the pairwise NTB fits are in the
range 0.3-1.7 eV/atom. The parametrizations obtained by
fitting to the dimer data perform poorly for larger clusters.
For example, the WH NTB model with zero penalty energy
fits the dimer data with an error of 0.08 eV/atom, which is
only slightly worse than the best TB model in Table 1. But
when this parametrization is used to model clusters and
nanoparticles, the mean unsigned error increases by factors
of 8 and 16, respectively, resulting in qualitatively incorrect
fits.

Many-body terms were incorporated in the nonorthogonal
formalism, and their parameters were fit to the dimer and
cluster data; after which, the resulting fits were tested against
the full data set. Table 2 indicates that the presence of the
many-body terms in the repulsion (WH+SR) does not
significantly improve the nonorthogonal model. Adding terms
in the electronic part of the calculation, however, is more
useful, and the errors for the AlN data with N ) 2-13
decrease by 24% and 37% for the SOD and SIP models,
respectively, compared to the pairwise NTB fits. When the
NMBTB models are tested for transferability against the
larger cluster and nanoparticle data, the SOD model is the
most accurate. However, even the best NMBTB method
(WH+SOD) has an error that is 4-5 times greater than that
of the simplest TB method.

Tight binding is sometimes implemented without explicit
repulsion, and theoretical arguments may be given in support
of this choice.7,37 (Other workers find it more natural to retain
explicit core repulsion.38) One may wonder if including an
empirical repulsion during the fitting procedure is perhaps
responsible for the lack of transferability of the NTB
parametrizations. (Note that removing the repulsion cannot
make the fitted errors decrease, as the resulting model is less
flexible. We are simply testing the effect that the repulsion
has on the transferability of the NTB parametrizations.) We
fit three NTB WH models without repulsion (denoted “XR”),

and the results are shown in Table 2. We find that the trends
are similar for NTB with and without repulsion, and that, in
fact, NTB with repulsion has slightly better transferability.

The CC TB model has no parameters in the electronic
part of the calculation, and three CC NTB fits were obtained.
The CC model without repulsion (CCXR) has no adjustable
parameters, and its errors are also presented in Table 2. For
the CC model, the repulsion does not significantly improve
the fitting error or the transferability. The overall errors for
the CC methods are larger than those for the best WH NTB
fits.

Comparing the best TB to NTB parametrizations shows
that the TB models are both more accurate and more
transferable than the NTB ones. Several theoretical analyses
of the effect of including the overlap in TB have appeared
in the literature,7,25,26,30-33,39-43 many of which focus on the
bulk band structure. We do not attempt another such analysis
here, but we do note that, whenever the effect of including
overlap has been discussed, there is an implicit assumption
or explicit working hypothesis, sometimes based on experi-
ence, that including overlap should make the model more
realistic. This belief also underlies discussions of other forms
of semiempirical molecular orbital theory; for example, the
statement that overlap introduces many-body effects was used
to justify its inclusion in a self-consistent-charge density-
functional tight-binding scheme.16,17 However, we know of
no previous systematic test as extensive as the present one.

Although it would be hard to establish firm guidelines for
the inclusion of overlap, we can illustrate the qualitative
difference in the TB and NTB WH dimer, and this is done
in Figures 1 and 2. Figure 1b shows that the electronic
eigenvalues have a qualitatively different shape for NTB and
TB, even for the dimer curve. For the TB model, atR ) 2.8
Å, the 3s and 3p energy bands are split by 1.9 and 1.6 eV,
respectively. For the NTB model, the bands split by 3.5 and
8.6 eV, respectively, and several of the energy levels tend
toward positive numbers at small atom-atom separations.
One can explain this qualitative difference as resulting from
terms such as (1- Sµµ'

kk') in the denominator of the NTB
energy expressions, whereas these terms are absent in the
TB model. For the aluminum dimer, the energy levels that
tend to large positive numbers are not occupied (for zero
penalty energy), the filled energy levels have similar shapes
for the TB and NTB models, and both models are able to fit
the aluminum dimer data with good accuracy.

Figure 2 shows the energetics for an FCC Al13 cluster as
a function of the distance of all 12 surface atoms from the
central atom for the same two fits as were shown in Figure
1. The TB total energy is fairly accurate, with the minimum
occurring very close to the accurate minimum. The NTB
total energy is qualitatively incorrect. Figure 2b shows the
qualitative behavior of the eigenvalues, which is similar to
the behavior of the eigenvalues for the dimer. In the case of
Al13, however, some of the repulsive electronic energy levels
for NTB are occupied, leading to an NTB total energy that
is too high for Al13. It is interesting to note that the electronic
energyEElec for the NTB method is in qualitative agreement
with the accurate total energyE.
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To gain further insight, we compare tight binding with
DFT. The level of theory is unrestricted PBEh/MEC,44,45and
the electronic (band) energy of DFT is defined as

whereγ denotes spin,εj
γ is the DFT orbital eigenvalue,nj

γ

is the orbital occupancy (0 or 1), andE0 sets the zero of
energy. (Note that PBEh was formerly called PBE0.) We
define the correction term to the electronic energy as

where E is the DFT total energy. The correction term
includes core-core repulsion and the double counting
correction for the electronic Coulomb interactions. We set
E0 such thatVRest is zero forN infinitely separated atoms,
that is,E0 ) N(E1 - EElec

1), whereE1 andEElec
1 areE and

EElec for an isolated Al atom, respectively, andN is the
number of atoms in the system.

Figure 3 showsVRest for PBEh/MEC andVRep for TB and
NTB, scaled (as explained in the caption) by the reciprocal
of the numberN of atoms. Near equilibrium,VRest is
approximately 3.7 and 2.5 times larger thanVRep for TB and
NTB, respectively. Some of the structure in the DFT Al13

curve is due to the lowest-energy solution changing its
multiplicity as a function of nearest-neighbor separation.

Figure 4 shows the 4N lowest orbital energies (averaged
over R and â spin for the case with an odd number of
electrons and for distances where the dimer is a triplet) for

DFT (in particular, PBEh/MEC) calculations on Al2 and for
FCC Al13. (Notes: (i) because MEC denotes the usage of
an effective core potential, there are no core orbitals in a
PBEh/MEC calculation, and this is equivalent to the 4N
lowest-energy valence orbitals in an all-electron calculation;
(ii) in counting to 4N, degenerate orbitals are counted a
number of times equal to their degeneracy, but we still have
eight curves at some internuclear distancesR for Al2 because
when the triplet is lower than the singlet for Al2 we use the
triplet solution, which breaks the degeneracy of theπ orbitals
in the unrestricted self-consistent-field formalism used here.)
Quantitative comparisons between DFT and tight binding
are not possible because of the different approximations

Figure 1. (a) Repulsive (thin dashed) and electronic (thin
solid) components of the total energy (thick solid) for the
aluminum dimer as a function of the nearest-neighbor distance
R for TB (red) and NTB (blue) models. The accurate (PBEh/
MG3 from ref 4) total energies are shown as black diamonds.
(b) Electronic energy levels εj for TB (red) and NTB (blue)
models of the aluminum dimer. Some of the levels are
degenerate. For zero penalty energy, half the levels are filled.

EElec ) ∑
γ)R,â

∑
j

nj
γ
εj

γ - E0 (16)

VRest) E - EElec - E0 (17)

Figure 2. (a) Repulsive (thin dashed) and electronic (thin
solid) components of the total energy (thick solid) for a face-
centered cubic cluster of Al13 as a function of the nearest-
neighbor distance R for TB (red) and NTB (blue). The accurate
(PBEh/MG3 from ref 4) total energies are shown as black
diamonds. (b) Electronic energy levels for TB (red) and NTB
(blue) for the aluminum dimer. Some of the levels are
degenerate. For zero penalty energy, half the levels are filled.

Figure 3. VRep/N for TB (red) and NTB (blue) and VRest/N for
DFT (black) for aluminum dimer (solid) and FCC Al13 (dashed)
as a function of nearest-neighbor distance R. The DFT method
used for this figure is PBEh/MEC.
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involved in the two theories. For example, for infinitely
separated atoms, the TB and NTB energy levels give (by
construction) the experimental ionization potentials, and the
pairwise repulsion (again, by construction) goes to zero. In
the DFT calculation, however, the energy levels for separated
atoms include double counting of the Coulomb terms, and
therefore, the correction term to the sum of the occupied
orbital energies is not zero. We have taken account of this
by our choice of the zero of energy in Figure 3, but there is
no simple way to correct the individual levels shown in
Figure 4. Also, the unoccupied orbitals in tight binding have
a different interpretation than those in DFT. Despite these
differences, we note that the qualitative shapes of the DFT
energy levels in Figure 4 agree better with the orthogonal
TB energy levels than the NTB energy levels, as shown in
Figures 1b and 2b, although the DFT energy levels have a
greater width (i.e., a larger second moment) than those for
the TB method.

A final issue that we will look at is how well TB can
predict the geometries of small Al clusters. The geometries
of small Al4 and Al5 are planar,46-48 and Al6 is the smallest
cluster to have a nonplanar ground state.46 The ability to
correctly predict the correct ground-state geometries of Al4

and Al5 with an analytical interatomic potential has proven
to be very challenging. The embedded-atom-type models of
Ercolessi and Adams49,50and Voter and Chen51,52predict that
Al4 and Al5 are three-dimensional. We note that both of these
interatomic potentials included the dimer in their fitting
strategy. Pettersson et al.53 have developed analytic inter-
atomic potentials that correctly predict Al4 and Al5 to be
planar, but the interatomic potential is unphysical for larger
clusters. For example, the Pettersson et al.53 interatomic

potential also predicts Al13 to be planar and has a 0.7 eV/
atom error for the bulk cohesive energy.53

We have optimized planar and nonplanar structures for
Al4, Al5, and Al6 with the PBEh44 density functional and
the MG3 basis set.54 The PBEh/MG3 structures are shown
in Figure 5. In Table 4 we list the PBEh/MG3, TB, NP-A,
and NP-B values for∆E, and we note that a negative∆E
means that the nonplanar structure is energetically more
favorable than the planar structure. The geometries for the
TB, NP-A, and NP-B calculations were consistently opti-
mized, and the PBEh/MG3 geometries were the starting
points for the TB, NP-A, and NP-B geometry optimizations.

The NP-A and NP-B interatomic potentials both predict a
three-dimensional structure for all three cluster sizes (AlN

with N ) 4-6). The TB method that was fit to the full Al
database, withN ) 2-177, is qualitatively correct for Al4,
and the TB methods are much closer to the PBEh/MG3
values than to the results obtained with the interatomic
potentials. These results are encouraging because the simple
TB calculations are about three times more accurate than
the best analytic functions.

VI. Conclusions
It is well-known that, in simplified methods, overlap-sensitive
errors of a similar kind but opposite sign may cancel, and it
is desirable to design approximate methods with this in

Figure 4. Electronic energy levels for DFT for (a) the
aluminum dimer and (b) a face-centered cubic cluster of Al13

as a function of the nearest-neighbor distance R. The DFT
method used for this figure is PBEh/MEC.

Figure 5. DFT geometries for planar and nonplanar AlN (N
) 4-6). The DFT method used for this figure is PBEh/MG3.

Table 4. ∆E (eV) for the Planar to Nonplanar
Isomerizations with DFT, TB, and the NP-A and NP-B
Interatomic Potentials

method fitting data Al4 Al5 Al6

PBEh/MG3 0.24 0.29 -1.06
TB 2 0.18 -0.30 -0.87

2-177 0.05 -0.26 -0.76
NP-A -0.59 -1.18 -2.04
NP-B -0.55 -0.89 -1.89
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mind.59 We have presented several parametrizations for
various tight-binding models, and we have investigated the
effect of including the overlap in the secular equation and
of including many-body terms. We found that one of the
simplest models (pairwise orthogonal TB fit to the dimer)
is almost as accurate for the entire data set (consisting of
808 geometries from Al2 to Al177) as the most accurate of
the TB fits (orthogonal TB WH+SR). As a general finding,
the orthogonal TB model is more accurate than the nonor-
thogonal model. Many-body terms do not improve the fits
in the orthogonal formulations, although they do result in
some improvement in the NTB fits when applied to the off-
diagonal Hamiltonian matrix elements.

Although the present tests of model types are extensive
and systematic, and the results are clear-cut, the tests are
restricted to a single element (the only element for which a
well-validated data set of nanoparticle energies is available),
and we cannot claim that it will always be more accurate to
neglect overlap in semiempirical molecular orbital theory or
even that it will always be more consistent to neglect it in
the special case of tight binding. In fact, although there has
been considerable success with orthogonal models, some
workers have found, contrary to the results obtained here,
that including overlap can reduce the number of parameters
and make the parametrizations more transferable.55,56But the
present results serve as a strong warning that one should
not assume that removing approximations (like neglect of
overlap) automatically and consistently improves approxi-
mate theories. Because including overlap in tight-binding
calculations often considerably complicates them and raises
the cost,55,57,58we recommend that researchers check carefully
how much, if any, improvement is afforded by including
overlap when they select a model for large-scale computa-
tions on nanoparticles, materials, or heterogeneous catalysis.
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